Michelle Tomczyk: Pascal Liquid Phase in Electronic Waveguides

  Clean one-dimensional electron transport has been observed in very few material systems. The development of exceptionally clean electron waveguides formed at the interface between complex oxides LaAlO$_3$ and SrTiO$_3$ enables low-dimensional transport to be explored with newfound flexibility. This material system not only supports ballistic one-dimensional transport, but possesses a rich phase diagram and strong attractive electron-electron interactions which are not present in other solid-state systems. Here we report an unusual phenomenon in which quantized conductance increases by steps that themselves increase sequentially in multiples of e2/h. The overall conductance exhibits a Pascal-like sequence: 1, 3, 6, 10 … e2/h, which we ascribe to ballistic transport of 1, 2, 3, 4 ... “bunches” of electrons. We will discuss how subband degeneracies can occur in non-interacting models that have carefully tuned parameters. Strong attractive interactions are required, however, for these subbands to “lock” together. This Pascal liquid phase provides a striking example of the consequences of strong attractive interactions in low-dimensional environments.